

Date Planned : / /	Daily Tutorial Sheet-12	Expected Duration : 90 Min
Actual Date of Attempt ://	JEE Advanced (Archive)	Exact Duration :

105	The order of the oxidation state of the phosphorus atom in H_3PO_2 , H_3PO_4 , H_3PO_3 and $H_4P_2O_6$ is :	2	
165.	The order of the oxidation state of the phosphorus atom in H_3PO_2 , H_3PO_4 , H_3PO_3 and $H_4P_2O_6$ is: V_3PO_4	"	

- (A) $H_3PO_4 > H_3PO_3 > H_4P_2O_6$ (B) $H_3PO_2 > H_3PO_3 > H_4P_2O_6 > H_3PO_4$ (2017)
- (C) $H_3PO_3 > H_3PO_2 > H_3PO_4 > H_4P_2O_6$ (D) $H_3PO_4 > H_4P_2O_6 > H_3PO_3 > H_3PO_2$
- *166. The colour of the X_2 molecules of group 17 elements changes gradually from yellow to violet down the group. This is due to: (2017)
 - (A) the physical state of X_2 at room temperature changes from gas to solid down the group
 - (B) decrease in HOMO-LUMO gap down the group
 - (C) decrease in $\pi^* \sigma^*$ gap down the group
 - (D) decrease in ionization energy down the group
- *167. The correct statement(s) about the oxoacids, HClO₄ and HClO, is(are):
 - (A) the conjugate base of $HClO_4$ is weaker base than H_2O
 - **(B)** the central atom in both HClO₄ and HClO is sp³ hybridized
 - (C) $HClO_4$ is formed in the reaction between Cl_2 and H_2O
 - **(D)** HClO₄ is more acidic than HClO because of the resonance stabilization of its anion

Paragraph for Q. 168 to 169

Upon heating $KClO_3$ in the presence of catalytic amount of MnO_2 , a gas W is formed. Excess amount of W reacts with white phosphorus to give X. The reaction of X with pure HNO_3 gives Y and Z.

- **168.** Y and Z are, respectively: (2017)
 - (A) N_2O_5 and HPO_3 (B) N_2O_3 and H_3PO_4
 - (C) N_2O_4 and H_3PO_3 (D) N_2O_4 and HPO_3
- **169.** W and X are, respectively: (2017)
- (A) O_2 and P_4O_6 (B) O_2 and P_4O_{10} (C) O_3 and P_4O_6 (D) O_3 and P_4O_{10}
- 170. The compound(s) which generate(s) N_2 gas upon thermal decomposition below 300°C is(are): (2018)
- (A) NH_4NO_3 (B) $(NH_4)_2Cr_2O_7$ (C) $Ba(N_3)_2$ (D) Mg_3N_2
- 171. Based on the compounds of group 15 elements, the correct statement(s) is(are): (2018)
 - (A) Bi_2O_5 is more basic than N_2O_5
 - **(B)** NF₃ is more covalent than BiF_3
 - (C) PH_3 boils at lower temperature than NH_3
 - (D) The N-N single bond is stronger than the P-P single bond
- 172. The total number of compounds having at least one bridging oxo group among the molecules given below is ______.

 (2018)

 N₂O₃, N₂O₅, H₅P₃O₁₀, H₂S₂O₃, H₂S₂O₅, H₄P₂O₅, P₄O₆, P₄O₇

- 173. Among B_2H_6 , $B_3N_3H_6$, N_2O , N_2O_4 , $H_2S_2O_3$ and $H_2S_2O_8$ the total number of molecules containing covalent bond between two atoms of the same kind is _____. (2019)
- 174. At 143 K, the reaction of XeF_4 with O_2F_2 produces a xenon compound Y. The total number of lone pair(s) of electrons present on the whole molecule of Y is _____. (2019)